

LOW COST PRECISION KILL (LCPK)

Agenda

- LCPK/APKWS History
- Mid-Body Guidance and Control Section
- Guidance and Control Electronics
- Distributed Aperture Semi-Active Laser Seeker (DASALS)
- LCPK Technology
 - Demo'd TRL 6 in Sept 2002
- Predicted Weapon System Performance
- Conclusion

BAE SYSTEMS Distributed Aperture SAL Seeker (DASALS) Technology enables Affordable Precision Upgrades to Existing Weapon Systems

Background

- Dec 89 US Army stated the need for a guided rocket program
 - "You could fire that Hellfire through a window four miles away at night."
 - -- Lt Gen Carl Stiner, XVIII Airborne Corps Commander
 - OPERATION JUST CAUSE highlighted the need for a lightweight, low-cost precision weapon against soft targets in urban terrain
- Feb 96 APKWS Mission Needs Statement signed
- Mar 00 APKWS Operational Requirements Document signed
- Low-Cost Precision Kill (LCPK) ATD (Advanced Technology Demonstration) sponsored by the Aviation and Missile RDEC from 1996-2002
 - BAE SYSTEMS and Raytheon selected as LCPK developers
- APKWS funded in 2001 with program responsibility passed to PM Aviation Rockets & Missiles in 2002
 - General Dynamics chosen as sole source integrator for APKWS contract award
 Feb 03 GENERAL DYNAMICS
 Armament and Technical Products
 - BAE Systems and Raytheon competed for APKWS seeker Seeker Award Feb 03

BAE SYSTEMS' Distributed Aperture Semi-Activity Laser Seeker (DASALS)

BAE SYSTEMS

DASALS allows for a Mid-Body LCPK Guidance System

BAE SYSTEMS' self-contained guidance and control system converts unguided 2.75" rockets into low cost guided rockets.

Designed to Support the Warfighter

Precision Attack, Low Cost Alternative complements the HELLFIRE and Common Missile

Launch

Target Acquisition & Tracking

Proportional Navigation

Uses existing Hydra-70

- Launchers
- Fire Control System
- Rocket Motors
- Warheads

Uses existing Laser Designators: Air (HELLFIRE) or Ground-Based

Plug-and-Play concept minimizes impact:

- On pilot training
- On weapons loading procedures

Mid-body design provides the flexibility to use any Hydra-70 warhead and fuze

Soft or Lightly Armored Target

Robust design protects seeker against:

- Adjacent weapon firings
- Sand, dust, and moisture

DASALS Guidance Assembly for the LCPK

Distributed Aperture Semi-Active Seeker (DASALS) Design

LCPK Pre-Flight Lab Test Summary

- Integrity (Temp / Shock / Vib)
 - BAE SYSTEMS IEWS,
 Nashua NH
 - ALSPES (selected units, before AMRDEC HWIL)
 - AMRDEC, Huntsville AL
 - HWIL
 - BAE SYSTEMS IDS, AustinTX
 - AMRDEC, Huntsville AL
- Metrology
 - Yuma PG, Yuma AZ
 - **Guided rocket checkout**
- test sequence before committing to ATD launch

Comprehensive, methodical,

Government-witnessed pre-

- Verify CTS interconnects & Telemetry (end-to-end)
- Pre-power Rocket to verify guidance electronics

BAE SYSTEMS

LCPK HWIL Test Summary Table

Test Chronology

Milestone	Date
6-DOF software install and I/F check	11-15 Jun 2001
Closed loop on CAM and IMU	9-13 Jul 2001
Seeker integration	6-10 Aug 2001
G&C tuning	13-17 Aug 2001
G&C tuning	20-24 Aug 2001
6-DOF validation runs	4-7 Sep 2001

LCPK Configuration

Brassboard hardware was used. Seeker, IMU, & dummy warhead were mounted on the flight table.

Guidance electronics & CAM were on a bench.

- 6" diameter canister housed the seeker electronics and IMU.
- Fixed block wings housed the four optical lenses.

Electronics

CAM & Guidance Electronics on Bench

Final HWIL System Integration and Test of LCPK Guidance Sections

- HWIL simulation verification and validation
- Final test of flight hardware and software prior to actual flight test
- The HWIL test process "caught" several problems saving potential flight test failures
- Flight scenarios had to perform successfully in the lab before releasing to the flight test team
- All test objectives were successfully completed

HWIL and THE SHOT - Great correlation

BAE SYSTEMS

CTV Test Flight Geometry, 09/19/2002, Yuma

BAE SYSTEMS

Impact - T+20 seconds, 5.5 km downrange

CTV Test Flight Results

- Target 5.5 km downrange
 - Center section 15% reflective nominal low reflective paint
 - YPG SOFLAM laser 4.5 km from target nominal SOF designation scenario
 - After completing CTV maneuvers ~12 sec, closed loop with seeker (similar to shifting target)
 - Hit target <1 m from laser spot beat ATD 2 m spec
- Exceeded 5 km long-range ATD exit criterion
 - Demonstrated closedloop control in spite of low aero energy

High-speed tracking video (showing atmospheric turbulence, flight stability)

Predicted Weapon System Performance*

(LCPK) APKWS accuracy is comparable to Hellfire ...

... providing an increase in stowed hits ...

... at significantly less cost per hit.

(LCPK) APKWS provides a 4:1 increase in stowed hits at less than 1/3 the cost per hit

Conclusion

BAE SYSTEMS

GENERAL DYNAMICS
Armament and Technical Products